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ABSTRACT 

The Feynman propagator or “integral over paths” is written with time t replaced by 
-in. The result is a propagator, corresponding to a diffusion equation with the classical 
Lagrangian replaced by the classical Hamiltonian in the kernel. An evaluation of this 
propagator, over a sufficiently long time, yields the absolute square of the ground-state 
wavefunction, viz., I UO(x)js of the quantum system. A biased Monte Carlo integration 
scheme, where the biasing is exponential in the energy of the system, is used to evaluate 
functional integrals in the case of the quantum mechanical particle in a box, oscillator, 
and Morse potential. This scheme and the results of the integrations are described 

I. INTRODUCTION 

The formalism of functional or path integrals first suggested by Feynman [I 1, 
[2], offers an alternative approach towards solving many problems of quantum 
mechanics. The close similarity between the Feynman integrals and the ones used 
by Wiener [3-51 in his studies of Brownian motion has been discussed in several 
recent papers [6-g]. This latter fact makes the functional integral method a useful 

1 This work was supported in part, by the USAEC, the National Science Foundation, and 
the Control Data Corporation. 
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tool for studying certain problems of statistical mechanics [lO-131. An excellent 
summary of earlier work on path integrals is found in an article by Brush [14]. 

In the present paper we propose to discuss the application of functional integrals 
to the numerical calculation of quantum mechanical wavefunctions. We shall 
attempt to show that, at least in principle, Feynman path integrals provide a 
rather direct and intuitively appealing method for computing the ground states 
of quantum systems, based on a simple approach with a minimum number of 
assumptions. As examples of this, we shall present computer results for three 
simple quantum systems, viz. harmonic oscillator, particIe in a box, and a particle 
acted on by a Morse Potential. Particular problems associated with multicenter 
potentials, singular potentials, and the appropriate use of statistics are pointed 
out, as is the promise of the method in terms of the reduction of machine time 
required for evaluation of wavefunctions for many-particle systems. 

II. FORMULATION OF THE APPROPRIATE PATH INTEGRAL 

We outline below the path integral formulation of the nonrelativistic Schriidinger 
equation. Our treatment is not the most rigorous one, but it is included here for 
completeness and general understanding of the method. 

Consider the time-dependent Schrodinger equation for a single particle of mass 
m, in a potential field V(X): 

where the Hamiltonian fl is given by 

ITi= -gw+ V(X). 
Introduce the orthonormal set of the eigenfunctions of the time-independent 
equation 

where 

and 

fiUn@) = GJJ&O, (3) 

s Un*(X) U,(X) 8x = 6,, (4) 

c clXl> KLs2) = &fh - Xl). (5) 
n 

Consider the expansion 

w, 0 = c cm u7m (6) 
n 
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where 
C*(t) = j U,*(X) $b(X, t) d3X. (7) 

Substitute it for 4(X, t) in Eq. (1) multiply both sides of the resulting equation 
by U:(X) and integrate over the entire space of X to obtain 

E&Jt) = ifi % (t), 

which may be readily solved to yield 

02 > 0 

Hence we may write for t, > t, 

#(X2 7 t2) = c C&2) WX2) 

= i G&> exp I- i &At2 - tJ/ 44X2) 
1L 

= C 1 j SK% , tJ CWJ d3&/ &(X2) exp 
n I - f En(t2 - tJ 

(8) 

(9) 

= j K& , tJ [Z CXG) &(X2) ew I- F (t2 - h(] d3Xl ?I 
= s ax, 7 x2 3 tz - tJ KG 3 tJ d3X, 9 (10) 

where we have introduced the Feynman propagator or Green’s function 

K(X, , X2 , t, - tJ = C U,*(X,) U,(X,) exp I- + (t2 - tl)/ d3X, . (11) 
n 

Equation (10) expresses the time development of the wavefunction in terms of the 
propagator K, and the initial form of the wavefunction. Several properties of K 
are now evident. First, from Eq. (11) we note that 

where the z,&(X, t) are time-dependent solutions of Eq. (l), and also 

fG, , X2 , t2 - h) = exp I- 3 (t2 - t3/ C G@J VdX2) 
n 

= exp 
I 
- 2 (t2 - tl)j 6(X, - X,), (13) 
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where Z& stands for the Hamiltonian involving only the coordinates X, . The 
exponential operator in Eq. (13) is to be regarded as the power series expansion 
of the exponent. It is easy to see from 

#(x3>t3) = J wh,X,,t, - t1> mb,t1)d3X,, (14) 
and 

m3> t3) = j W,,X,,t, - t2) ~@2,t2)d3x2 

Ez JJ m,,x,, t, - h)m2,X3, f3 - t2) ml>tl)d3X2d3& 

(15) 

that the semigroup composition law 

Jm1,X3,t3- h> = jK(xl ,x 2 3 t2 - t3 W,,X3,t3 - t2) d3& (16) 

holds. This convolution property of the propagator is characteristic of stochastic 
processes. 

Since we are concerned with the forward propagation in time (t2 > tl), it is 
convenient to redefine a new propagator R as 

mGJ2J2 - t1> = Jwh , x2 , t, - t1> w2 - h>, (17) 

where d(t, - tl) is a step function defined by 

fqt, - tl) = I :, t2 2 t, , 

tz < t, . 
(18) 

The temporal development of the wavefunction may then be written as 

@2 9 t2> w2 - t1> = pwl 9 X, , tz - tl> $(X1, t3 d3& 2 (19) 

which is the quantum mechanical form of the “Huygens’ Principle” in classical 
optics. Mathematically, the propagator or kernel K/8 is the Green’s function of 
the Schrodinger equation (1). For, 

- 

t ifi-&-fi2 
2 1 $LX2,t2-tr3 

= g 02 - t1) KG 9 x2 9 t2 - t1) 
2 

+ $ (t2 - td 1 &XX1 , td[ifi % (X2 , f2) - hKX2 , t,)] 

= S(t, - tl) 6(X, “_ Xl), (20) 
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where we have used the fact that 

g (r, - Zl) = S(t, - r,), (21) 2 

and that 
lim K(X, , X, , t, - ti) = 6(X, - X,), 
t&l (22) 

as can be seen from the relation (12). 
In order to obtain the path integral form of the propagator, we use Eq. (13) and 

consider a small interval of time E = t, - t1 . Thus 

K(X, , X2 , E) = e+‘H2’LS(X, - X,). (23) 

Equation (23) expresses the fact that the propagator for an infinitesimally small 
time could be generated from its initial a-function value [cf. Eq. (22)] through a 
unitary transformation in time. 

We now use the operator relation 

(24) 

which is exact if A and 2 commute with their commutator [A, B] and correct up 
to second order in E, otherwise. This reduces Eq. (23) to the following form 

x exp I$ Vz2 1 8(X, - X,) (V2 = UX2N. (25) 

Now if we use the Fourier representation of the &function 

%X2 - Xl) = -,s” expfik - (X2 - Xl)> & (26) 

in Eq. (25) and carry out the operation, we arrive at the result 

kV2 K(X, , X2, c) = exp I-- 7,/ exp I-& V2V2/ 

x ~~~~mexp~i~&k~V2V2--$$+k*(X,-Xl)~~$$. (27) 
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The integral is evaluated in the usual manner, and we obtain 

ml, x2,4 = &(X1 ,  x2 9 4 l wh ,  x2 3 4, 

where 

Ko(Xl , X2, e) = (*)3’2 exp 1% [+ ( X2 T xl )” - v(x,jJ 1 (29) 

C(X,,X2,a)=exp[+[~~-Q*VV2-~Vp2~Z]/. (30) 

and 
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(28) 

The expression (28) for the propagator is correct to second order in c. As long as E 
is small, the correction term C(X, , X, , l ) is unimportant, and in the subsequent 
discussion we shall use only K, . 

We wish to point out here that our method of derivation holds only for Cartesian 
coordinates. Some care has to be taken to obtain the appropriate form of the 
propagator for coordinate systems other than Cartesian [15]. 

The expression for the propagator for a finite time interval t2 - tl can be obtained 
from Eq. (29) by dividing the time interval into N equal parts each of length E and 
applying successively the composition law of Eq. (16). This gives 

K(X, , X N+l, t2 - t1 = NE) 

(31) 

In the limit of E + 0, N -+ cc and NE finite, we obtain the Feynman form [2], 

tz MX,,XN+~, 2 t - t, = NE) = i exp 1; JtIL(X, X, t) dt f DX(t), (32) 
N-CC 

where L(X, X, l ) is the classical Lagrangian of the particle, and the symbol DX(t) 
denotes integration over all possible, yet unspecified, paths of the particle. Equation 
(31) is thus a Riemann multiple integral approximation to the Feynman propagator 
of Eq. (32) with the paths specified by “broken-line” curves. Other parametrizations 
of the paths are possible and have been discussed in the literature [16-201. 

An interesting aspect of the Feynman path integral form of Eq. (31) is that it 
allows us to consider the classical limit fi + 0. As fi approaches zero, the integrand 
of Eq. (31) becomes a very rapidly oscillating function. Very small changes in the 
action would therefore result in large changes in the phase, which in turn would 
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imply a strong tendency towards mutual cancellation of the contributions from 
neighboring paths. If however, the path is classical, for which the action J: L dt 
is stationary, the nearby paths will contribute equally to the integral. In other words, 
the contributions in the immediate neighborhood of the classical path tend to 
interfere constructively. Thus in the limit fi -+ 0, the greatest contribution comes 
from the paths close to the classical path. 

III. THE PROPAGATOR IN IMAGINARY TIME 

The expression (31) for the propagator involves oscillatory integrals and hence 
is not suitable for obtaining the ground state wavefunction. For this purpose, it is 
convenient to use the imaginary time coordinate which renders the integrals real 
Thus, if we replace “it” by 7, the Schriidinger equation (1) changes over to 

Al&x, T) = -4 g (X, T) (33) 

which has the form of a diffusion equation. This does not introduce any changes 
in the time independent eigenvalue equation (3). It is thus permissible to replace 
“it” in Eq. (11) and “2’ in Eq. (31) by 7. We then obtain the equation 

Wb , X2 , 72 - TJ = C exp I - p (72 - Tl,/ CYXI) G(X,>, (34) 
n 

corresponding to Eq. (11) and the result 

x I”i dXe3 
k=2 

(35) 

corresponding to Eq. (31). The limiting form when T + 0, N + co, NT finite is 
then given by 

iii K(x, , xN+l , NT = T2 - 71) = 1 exp I- k 1:: Hdtl DX(T), (36) 
N-C 

where His the classical Hamiltonian. Equations (35) and (36) are in fact related to 
Wiener integrals, which have been extensively studied in the literature [3], [4], 
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[21-251. It is interesting to note here that on account of the real nature of the 
integrand and finiteness of fi, the greatest contribution to the propagator comes 
from the path which makes the total action J$ H dT a minimum. This is analogous 
to the “classical path” of the preceding section. However, since the exponent is real, 
contributions from all paths add together with some being large and others being 
small. 

Consider now the propagator K(X, X, T) for a sufficiently long time interval T. 
We have from Eq. (34) 

K(X, X, T) = C exp [ - F! / U,(X)12 
92 

z exp 
i 1 
- y 1 U,(X)l~ 

for large enough T, provided that the ground state and the first-excited states are 
well separated from each other in energy. The behavior of the propagator for 
various times is illustrated in Fig. 1 for the harmonic oscillator, for which an exact 
analytical form of K(X, X, T) is available [2]. 

FIG. 1. An exact analytic evaluation of the one-dimensional harmonic-oscillator propagator 
for various imaginary times. 
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Equation (37) implies that if we let XN+l = X1 in Eq. (35), then, for large time 
differences, we obtain the absolute square of the ground-state wavefunction-of the 
system times a multiplying factor, which is a simple function of the energy of the 
ground state. In fact, if we evaluate the normalized path integral, 

(38) 

for a sufficiently large value of T, we obtain the absolute square of the ground state 
wave function. The problem is thus reduced to the numerical estimation of the 
R.H.S. of Eq. (38). This may be carried out in a convenient manner, by means of 
a Monte Carlo procedure described in Section V. Once the ground state wave 
function is determined, the corresponding energy may be determined in two 
ways. One way is to compute the average potential energy using the generated 
wavefunction and apply the Virial Theorem. An alternative method is to obtain 
the average of the Hamiltonian operator itself. 

While the quantum mechanical use of path integrals for the numerical evaluation 
of ground states is a relatively new3 application, functional integrals have been used 
for some time in statistical mechanics [12], [26-291. This is because the partition 
function is equal to the integral of the diagonal elements of the propagator, if we 
make the substitution ~/fi = /3 = I/kT, in Eq. (34). We obtain thereby 

j qx, x, T) d3X = I( j 1 U,(X)12 2x) e-BE* 11 

= T e-pEm 
= Z(B), (39) 

where Z@) is the partition function. An important difference exists between statis- 
tical mechanical calculations and the present problem. This difference lies in the 
values of /I or T which need to be used in these two cases. If one is interested in the 
quantum mechanical ground state, it is necessary to use a sufficiently large value 
of 7 so that the ground state is the only important contributor to the final result. 
This corresponds to a value of /I equivalent to a very low temperature. Most 
statistical mechanical calculations performed up to now have not approached 
these low temperatures, where the effects of quantum mechanical statistics represent 
more than a small perturbation. 

3 However, a method for iinding the smallest eigenvalue and eigenfimction of the Schrtinger 
equation, based on functional integrals, has been proposed by Donsker and Kac [30]. Since 
then the idea has been reverberating in the literature (81, [21], 1251, [31], [33]. 
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We shall indicate below that, while this is relatively easy to do in principle, in 
practice very serious problems concerning accuracy arise using the standard form 
of the propagator. This forces us to consider the question of statistics very carefully 
and also to pay considerable attention to those parameters and procedures which 
make a given evaluation as accurate as possible. 

IV. USE OF A MONTE CARLO METHOD 

The evaluation of the multiple integrals of Eq. (38) by the standard quadrature 
methods is impractical, since N is usually a large number. In fact, the time required 
to compute a one-dimensional integral using a simple quadrature formula involving 
p number of points would be proportional to p. A straightforward generalization 
of this would imply that the time required for evaluating an N-dimensional integral 
would be pN. On the other hand, a simple Monte Carlo method based on a uniform 
sampling of points from the integration space would involve a time which is only 
linear in N. A Monte Carlo method may not be as efficient as an ordinary 
quadrature technique when integrals of very few dimensions are involved; but as 
the dimensionality N of the integrals is increased, Monte Carlo soon gains 
efficiency, and when N is very large it probably becomes the only feasible method 
to use. 

A numerical technique for directly integrating the time-dependent Schriidinger 
equation in imaginary time has been discussed in recent literature [33]. When only 
one spatial dimension is present, this technique may be more efficient than the 
method using the path integrals. This is because in the latter method one is dealing 
with an integral with a large multiplicity. However, when more than one spatial 
dimension is involved, the present Monte Carlo path integral approach is expected 
to be a better method. 

In general, the Monte Carlo procedure will require a minimum of around 
100,000 configurations to evaluate the path integral to approximately 1% accuracy. 
An offhand guess of the number of configurations n could be obtained from the 
amount of statistical fluctuation (-L+/~) one is willing to tolerate in the results. 
The exact value of n will probably depend on the particular potential being studied 
and on the magnitude of the time step T. Actual numerical evaluations of the path 
integrals for some elementary quantum mechanical problems have indicated that 
the above estimate for n yields results of reasonable accuracy. 

We discuss the details of the calculations below. However, by way of illustration, 
Figs. 2 and 3 give results of some of these calculations for the harmonic oscillator 
for various times. In Fig. 2 the Monte Carlo computer evaluation is plotted as 
well as an analytic evaluation of the ground state of the one-dimensional harmonic 
oscillator. Here, the integration time is chosen to be sufficiently large so that the 
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FIG. 2. Comparison of an analytic evaluation of the harmonic-oscillator propagator and 
two Monte Carlo evaluations. 

ratio of the contribution of the first-excited state to that of the ground state is 
approximately 10-4. Also shown in the same figure are results of a similar calcula- 
tion for a shorter time. Figure 3 shows the Monte Carlo results compared with 
analytic evaluations of the propagator for three different times. The results for the 
largest time gives almost pure ground state. The results for two smaller times 
show the mixture of the ground and the excited states. 

V. DESCRIPTION OF THE NUMERICAL PROCEDURES 

In order to evaluate the functional integrals involved in Eq. (38), we use a 
method which is basically the same as the one proposed by Metropolis et al. [29], 
and employed in many statistical mechanical calculations. It is thus necessary to 

4 This discussion is for a one-dimensional problem, generalization to more than one dimension 
being quite straightforward. 
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FIG. 3. Comparison of analytic and Monte Carlo evaluations of the harmonic oscillator 
propagator for three different imaginary times. 

give only an outline of the procedure here, in terms of the following steps taken 
on a computer. 

1. First, an initial configuration is chosen. This consists in generating an 
initial path by choosing the N points x1 ,..., XN, randomly, within the interval 
[a, b]. If the interval [a, b] is assumed to be equally divided in M subintervals, each 
of these points would fall in at least one of these subintervals. We call these sub- 
intervals X-boxes. 

2. Next, an integer j(1 < j ,< N) is chosen at random. This integer specifies 
the point xj for which a trial move is constructed. The trial move is made by 
choosing a random displacement which lies anywhere from to -cx to +or. Thus 
for a random j, a trial move for xi would be 

xj - xj + 42q1 - 11, 

where Q is a random number between 0 and 1. 
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3. A decision whether to accept or reject the trial move is then made on the 
basis of the following criteria: 

The old and new path quantities E(x, .*a ICY) and the 
difference dE is calculated, where 

if d,!? < 0, that is, if the new “energy” is less than the old “energy”, the trial move 
is accepted, and we obtain a new path. If dE > 0, the trial move is accepted with 
probability exp(-&lE/ti). This is done by picking a random number Q between 
zero and one, and comparing it with exp(-TdE/lti). If Q < exp(-TdE/tr), the 
move is accepted; if otherwise, the move is rejected. 

If the move is rejected, the old path is counted as a new configuration 
for averaging purposes. 

4. The contribution of the new path to the integral is calculated and added 
to that of the previous paths. A new cycle is then generated starting from step 2. 

Using a sufficiently long Markov chain of configurations constructed in the 
above manner one can obtain the value of the integral (38), or of any similar 
integral defining the average of a function of configurations, simply by averaging 
over all members of the chain. In fact, as the length of the Markov chain goes to 
infinity, the limiting frequency of each configuration would be proportional to the 
exponential factor exp( - &/A) for that configuration. 

It may be remarked here that one could also do a straightforward Monte Carlo 
calculation by choosing configurations at random rather than as members of a 
Markov chain and then assign weights. Such a method, in the present context, 
would have the tendency to pick with high-frequency paths for which exp(-&/fi) 
is small and hence are relatively improbable. (This has the consequence of making 
the wavefunction unnecessarily accurate for small values of I # 12.) This method is 
therefore inefficient as compared to the “importance sampling” procedure of the 
Markov-chain method [32] outlined here. 

The procedure as outlined above only calculates the propagator at one value of 
the coordinate, viz. X1 = X,,, . In order to calculate the entire wavefunction it 
would thus seem that this procedure is to be repeated for all possible values of the 
coordinate or for some appropriate coordinate grid. It is possible to avoid this 
duplication of effort in the following manner. A typical path is shown as a space- 
time plot in Fig. 4(top). The closing path shown in Fig. 4(bottom) from X, to 
x - X1 implies that no one point in the path is unique. Therefore, the same N+l - 

path which contributes to the wavefunction at X1 contributes an equal amount to 
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the wavefunction at X2 , at X, , etc. In fact, any one of the points X2 ,..., X, could 
have been considered, in place of X, , as playing the role of the beginning and end 
point of the path. An efficient numerical method should take advantage of this fact 
that one path contains information about the wavefunction at many points. Since 
the particular X coordinate which is subjected to the trial move is the only coordin- 
ate contributing new information during the execution of the logical cycle, there 
is no need of repeated application of the information contained in the other X 
coordinates. We may therefore, concentrate all of our attention on the J/coordinate 
we attempt to move, by regarding this particular coordinate as the joint origin 
and terminal point for the path. 

The statistics are taken as follows: since the paths are selected with an exponential 
bias, and since the contribution of any one path to the propagator is the very same 
exponential, whenever we have obtained a new X coordinate we put a count of 
unity in a box corresponding to that particular X coordinate. By placing unity in a 
box instead of the actual value of the exponential, we remove the biasing factor 
contributed by our sampling scheme. After we have gone through a sufficient num- 
ber of cycles to obtain the required degree of accuracy, all of these counts in the 
various X boxes are divided by a normalization factor which is equal to the product 
of the size of the X box times the total number of cycles. 

To summarize, we have a situation in which an arbitrarily chosen path, if 
carried through a sufficient number of cycles of movements, relaxes to an 
equilibrium position, within fluctuations, in such a way that further continuation 
of the cycling procedure will give only configurations with the “exponential” bias. 
The entire integration procedure then consists of arbitrarily picking an initial path, 
allowing this path to relax without taking any statistics, and, then, after sufficient 
cycles of relaxation, continuing the procedure while taking statistics until the desired 
accuracy is achieved. It is clear that this procedure remains virtually the same in 
every case regardless of the physical system under consideration or the time for 
which the integration is carried out. It is, therefore, at least in principle, possible 
to think of writing one computer code which could handle any physical system, 
assuming that a computer of sufficient speed and storage capacity is made available 
In actuality, however, this is hardly the case, and much of the rest of this paper is 
concerned with a discussion of the problems encountered in evaluating path 
integrals even in one-dimensional systems with well-behaved potentials. 

VI. EFFECTS OF THE POTENTIAL 

For preliminary investigations, it was found convenient to treat the one-dimen- 
sional harmonic-oscillator potential. The Coulomb potential would have been more 
interesting, but because it goes to infinity at R = 0, the origin, it imposes more 
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severe requirements on the method, and 
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VII. UNIQUENESS OF THE MARKOV CHAIN 

The final point which should be noted before discussing the experimental results 
is that there is a question about whether or not one Markov chain, as we have 
described it, is sufficient to adequately cover the space of the functional integral. 
This is not necessarily equivalent to asking whether or not the system as we have 
described it is ergodic. It is quite possible for one Markov chain to have the ability 
to eventually cover all of the appropriate space, but to do so sufficiently slowly so 
that this characteristic is of no practical value. Thus, the question of how many 
Markov chains are needed breaks up into two questions. The first question is, does 
one Markov chain have the ability to cover all of the appropriate phase space? 
And the second question is, if it has the ability to do so, will it do so sufficiently 
quickly to be of practical value? 

In the case of the second question, it is quite likely that a full answer will depend 
on the particular potential and the particular value of time step, E, chosen in a 
given case. A third parameter of considerable significance in this respect is the 
maximum size 01 for an attempted move of a given coordinate, and a fourth para- 
meter is the total number of time steps N, since the rate at which one can remove a 
“memory” of a previous configuration should go roughly as the inverse square 
of this quantity. 

VIII. EXPERIMENTAL 

Before beginning an actual computer run it is necessary to select parameters such 
as the time step, total time, maximum spatial displacement, and the various grid 
sizes. The first parameter which must be determined is the total time. If the energy- 
level structure of the system is understood at least approximately, a reliable estimate 
of a proper integration time can easily be determined by making the exponential in 
the difference in energies between the first-excited state and the ground state divided 
by fi smaller than the error which one is willing to tolerate in the total Monte Carlo 
integration. If, however, the energy-level structure is not understood, then it will 
be necessary to regard the integration time as a parameter to be determined, and 
one will have to make at least two integrations for two different times to determine 
whether or not one has picked a time sufficiently large so that one is obtaining 
essentially the ground state. It may be worth mentioning here that some caution is 
necessary when one is dealing with potentials which exhibit classically metastable 
configurations (e.g., a potential with a double or triple minima). In such cases, 
one may end up with metastable paths rather than paths corresponding to the true 
ground state. An effective way to remedy this defect would then depend upon the 
potential being studied. Similarly, if the first-excited state is reasonably well 
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separated in energy from the second-excited state, then integrations for at least 
two times, one of which is of such a length that the first-excited state contributes 
significantly to the wavefunction while with the other time the first-excited state 
does not so contribute, will presumably yield a value for the wavefunction and 
energy of the first-excited state. 

A precise estimate of the time step E is generally difficult to obtain, and is perhaps 
unnecessary. In practice, it suffices to choose E much smaller than the characteristic 
times of quantum motion involved in a given problem. One usually has some idea 
of the latter, if not entirely from theory, then from computer experiments in the 
vvorst circumstances, when one is dealing with a relatively unknown system. For 
example, for the harmonic-oscillator a range of values from 0.1 to 0.5 (in units of 
ij = m = w = 1) have been found to yield reasonable results. 
/ The correct procedure for determining the maximum spatial step size 01 is not so 

obvious. Previous experience might be helpful. ‘However, a variational-type 
approach might be employed. Provided that E and the total time are chosen appro- 
priately, a trial value of 01 would yield a wavefunction which in turn yields an 
upper bound to,the ground-state energy. By changing (Y, one could obtain several 
estimates for the ground state and the corresponding energy:. The minimum of all 
these values for the energy would then be the best estimate for the energy, and the 
corre@nding parameter 01 may then be used to generate the best possible estimate 
of the ground-state wavefunction. This is partly illustrated in Fig. 5, where Monte 
Carlo results for the wavefunction for various values of the parameter 01 are shown. 

In order to achieve a faster relaxation, one may temporarily increase the time 
step during the early period of the cycle. This has the effect, as can be seem from 
expression (1 l), of filtering out the excited states more rapidly. Increasing the 
total time while retaining the same number of time steps is equivalent to increasing 
the value of E. For small values of E the kinetic energy term, which is proportional 
to ((X - X)/E)“, is large compared to the potential energy terms which does 
not contain E. Thus increasing the value of epsilon allows the configuration to see 
the potential more quickly during any given attempted move and forces it towards 
the minimum of the potential. However, such a procedure should not be used for 
the entire relaxation period, but instead toward the end of the relaxation period 
one should return to the value of time step which one intends to use in the actual 
integration. Actual experiments on the machine indicate that this is a reasonably 
good way to achieve quick relaxation. 

One can think of several ways of estimating how well a system has relaxed. The 
simplest one is the condition for the equilibrium of a statistical mechanical system, 
viz., that the total number of upward transitions equal the total number of down- 
ward transitions. If one keeps statisties on these numbers and assumes that relaxa- 
tion has occurred when these conditions have been achieved, one has one possible 
measure of the time required for relaxation. Unfortunately, our results indicate 
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FIG. 5. Comparison of the analytic propagator and several Monte Carlo evaluations with 
different maximum spatial steps, cx. 

that equilibrium in this sense is attained long before the system is sufficiently 
relaxed so that good statistics could be obtained for all parts of the wavefunction. 
Similar results are obtained for the root-mean-square distance moved per configura- 
tion. That is, this number becomes constant before really good statistics can be 
taken. Normally, we have been forced to compare statistics taken on sets of 
consecutive configurations to determine when relaxation is reasonably complete. 

We have found that one Markov chain is not in general completely reliable or 
capable of sufficiently rapid movement so that all phase space is adequately covered 
with it in a reasonable length of time. In the case of the harmonic oscillator and 
other potentials for which one already knows the answer, it is generally possible to 
pick a particular set of values of E and the maximum step size a such that one 
Markov chain gives very good results. However, when one is seeking the character- 
istics of an unknown system, a more reliable procedure would be to generate many 
Markov chains, allow each one to go through a relaxation period, collect statistics 
after these relaxation periods for.a certain length of time, and add the statistics 
for all of the different chains together to obtain the total wavefunction. Figure 6 
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FIG. 6. Plots of the harmonic-oscillator propagator for calculations using the summed results 
of several individual Markov chains. 

gives plots of wavefunctions in which the same number of configurations has been 
used for the statistics but several different Markov chains have been generated. 
For these plots values of E and OL were chosen which did not give good results for 
a single Markov chain, although the choices of these parameters seemed to be as 
reasonable as the choices which did give good results for a single Markov chain. 

Several questions arise, naturally, concerning the details of the relaxation process. 
When one is dealing with many time steps it is very unlikely that during the random 
choice of the initial path one finds a path whose relaxation will require an 
inordinately long time. We have examined several paths chosen at random and 
found that each of these transforms into a reasonably broad spectrum of 
components with no one component represented to an inordinately large extent. 
One question of concern during the relaxation process is whether or not a configura- 
tion is pure in the sense that it is made up of only one component, because if this 
happens, it would represent a kind of metastable situation. Another question is, 
are there components which relax more slowly than others ? And if so, are they 
related in any important fashion to the entire wavefunction or to special regions 
of the wavefunction? Figure 7 shows the kind of wavefunction produced as a result 
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FIG. 7. Plots of three individual Markov chains and their sum under conditions in which 
statistics were taken before each chain had fully relaxed. 

of adding up the statistics of many independent Markov chains but in which the 
relaxation period in a given Markov chain was too short to allow complete relaxa- 
tion. It is clear that some components in the path relax more slowly than others 
and that these components are associated with the peak of the absolute square of 
the wavefunction. Figure 8 shows the intermediate stages of a relaxation process 
during a single Markov chain of 200,000 configurations. It is possible to allow the 
system to relax for a longer time so that those slowly relaxing components 
associated with an incorrect peak can be eliminated. 

There is another set of unwanted components associated with a given configura- 
tion which relax very slowly. These components appear when one is dealing with a 
rather small time step. If one has a very small time step, then the peak of the absolute 
square of the wavefunction is both too narrow and too high. These components 
are apparently associated with the fact that with small time steps one is to a certain 
extent emphasizing the contribution from the higher-energy components. 
Experimentally, the effect of these high-energy components is not evident until a 
given path has gone through a great many conflgurations. Thus, these components 
relax extremely slowly, practically not at all in fact, and while they are small in 
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FIG. 8. Plots of statistics for the same Markov chaii during different intervals of its history. 

an initially unrelaxed and even in a quasi-relaxed path, they seem to represent the 
principal undesirable contribution remaining in a configuration resulting after a 
great many steps. Averaging over many independent runs tends to de-emphasize 
these components, since their effect does not become important during the number 
of configurations one is likely to use in any one of a set of relatively short inde- 
pendent runs. 

A summary then of the empirically determined rules for selecting the best para- 
meters is the following: 

1. Pick as large a time step size E, as is consistent with the accuracy desired, 
This will ensure that those path components which cause too highly peaked paths 
will be minimized. 

2. Pick as short a total integration time as is consistent with the attainability 
and the accuracy of the ground state. This will allow one to select all of the 
different time steps relatively rapidly in the sampling procedure so that the memory 
of a previous configuration disappears as soon as possible. 

3. Pick a maximum spatial step size such that one is successful in moving a 
point only 10 to 30 % of the time. While this means that one does not move a coor; 
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dinate so often, it means that when a coordinate is moved, it is likely to be a relativ- 
ely large step so that the configuration moves through phase space more rapidly. 

4. Use several (for example, five or ten) independent Markov chains, and 
without spending too large a fraction of the computer run in initial relaxation, 
take the statistics, using a total number of configurations about two or three 
times as large as the number of configurations required for initial relaxation. 

Finally, Figs. 9 and 10 show the optimum results obtained for a particle in a 
box and a particle acted on by the Morse potential. The Monte Carlo results are 
shown along with the analytical results, and the values of the ground state energies 
are indicated. These results further confirm the discussion of the present section. 
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. Monte Carlo 

Ad. Energy : 0.8750 
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-I 0 0 1.0 2.0 30 

Distance X 

FIG. 9. Comparison of analytic and Monte Carlo evaluations of the one-dimensional Morse- 
potential propagator. Space and time steps were experimentally optimized. 

IX. EXCITED STATES AND STATISTICS 

We mentioned above how one might be able to calculate the first-excited state 
if the second-excited state is relatively well separated from it in energy. Under the 
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RG. 10. Comparison of analytic and Monte Carlo evaluations of the one-dimensional 
particle-in-a-box propagator. 

same condition, one could obtain the absolute square of the wavefunction of the 
first-excited state by making one run which gave one pure ground state and a 
second run with a shorter integration time which gave the mixture primarily of 
the first-excited state and the ground state. The contribution of the ground state 
to this result can then be subtracted out leaving the first-excited state. 
Unfortunately, since this will involve taking the difference between two large 
numbers which are not known too accurately, the resulting wavefunction will not 
be too accurate. 

Taking exchange statistics into account is somewhat similar to the problem of 
determining excited states. We know that 

w, 2, 0 = -L fi [W, 290 f w, 1, t11 
(40) 

= 5 j [K(l, 2; l’, 2’, t) * K(2,l; l’, 2’, t)] Y(l’, 2’, 0) CL& dX, 
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gives the wavefunction of a two-particle, one-dimensional system at time t as a 
function of the wavefunction of the same system at time zero. The plus sign corre- 
sponds to Bose statistics and the minus sign to Fermi statistics. The two propagators 
are very nearly the same, except that in the second one the labels on the particles 
at time t have been interchanged. In order to determine the absolute square of 
the total wavefunction for two Fermi particles, one would subtract the second 
propagator from the first after in each case one had set the coordinates of the 
particles at time t equal to the coordinates of the particles at time zero. Figure 
1 l(top) is a stylized drawing of the two paths associated with the integration of the 
propagator in which no exchange has taken place. Figure 1 l(bottom) is the equi- 

Symbolic Representation 
of. 

The Two Particle Propagator 
k (1, 2. l’, 2’. 1) I(1 = 1’. 2 = 2’) 

SymbolicofRepresentation 

The Two Particle Propapator 
k (2, 1, 1’s 2’, t ) (2 q 11, 1 z-2’) 

I  

FIG. 11. (top) A symbolic representation of the unpermuted half of the one-dimensional 
two-particle propagator; (bottom) a symbolic representation of the permuted half of the one 
dimension two-particle propagator. 
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valent stylized drawing for the paths of the second particle in which the final 
positions have been interchanged and then the coordinates at time t have been 
set equal to the coordinates at time zero. 

For the case of the two Fermi particles we are considering it is clear that the 
propagator for the exchanged system is equivalent to the propagator for a single 
particle in which the time is twice as long. We know that when we are dealing with 
two Fermi particles, which are in the same potential well but which do not interact 
with each other, the ground state of the total system will be that for which one of 
the particles is in the one-particle ground state and the other is in the first excited 
one-particle state. In 

yy2 N K(1, 2; l’, 2’, t)li,,~,,=,~ - K(2, 1; l’, 2’, t)l,,,t,,=,, 

(41) 

we have used these facts, that is, the first two terms on the right hand side of the 
equation come from the first propagator and give a contribution from the ground 
state and from the first excited state. The second propagator being only a one- 
particle propagator, in essence, contains only a contribution from the one-particle 
ground state. This contribution gives rise to the third term in expression (41) in 
which c is a constant to be evaluated. Equation (41) rewritten as 

1~72 ~ e-Eotl”[e-(El-E~)t’“u~2 + (1 _ ce-W’fi) u,“] (42) 

implies that the constant c is given by 

e-(El-Eoh/fi = 1 - cemEOt”. (43) 

As a consequence of this, one is essentially left with the same problem in the case 
of exchange statistics that one had while dealing with the excited states. As the 
number of particles in the system increases, the problem becomes more severe, 
because one will be adding and subtracting several propagators corresponding to 
all the various exchange classes to obtain the total wavefunction. This then would 
require more detailed investigation and is beyond the scope of the present paper. 

X. CONCLUSIONS AND SUMMARY 

We have discussed a method for determining the ground states of quantum 
mechanical systems on the computer in which essentially no approximations are 
required. We have shown that, in the case of the harmonic-oscillator, particle-in- 
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the-box, and Morse potentials, the procedure works reasonably well. We have 
also discussed some of the practical experimental difficulties in obtaining accuracy 
on the computer. However, the problems associated with exchange statistics, 
singular potentials, and non-Cartesian coordinates need to be overcome before the 
method could be profitably used to handle complex unknown systems. 
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